Nuprl Lemma : es-prior-fixedpoints_wf 11,40

es:ES, X:AbsInterface(Top), f:(E(X)E(X)).
(x:E(X). f(x) c x (e:E(X). prior-f-fixedpoints(e ({e':E(X)| f(e') = e'  E}  List)) 
latex


Definitions(e < e'), x:AB(x), x:AB(x), s = t, t  T, strong-subtype(A;B), P  Q, ES, AbsInterface(A), E(X), A, f**(e), X(e), sender(e), e loc e' , e c e', (e <loc e'), x:A  B(x), b, left + right, P  Q, {x:AB(x)} , Void, False, Top, f(a), prior-f-fixedpoints(e), E, , type List, a:A fp B(a), <ab>, prior(X), e  X, Type, EqDecider(T), Unit, IdLnk, Id, EOrderAxioms(Epred?info), EState(T), Knd, xt(x), x,yt(x;y), kindcase(ka.f(a); l,t.g(l;t) ), Msg(M), , , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), e < e', r  s, constant_function(f;A;B), P & Q, loc(e), kind(e), let x,y = A in B(x;y), [], A List, [car / cdr], case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , , as @ bs, ff, b, tt, P  Q, p =b q, i <z j, i j, (i = j), x =a y, null(as), a < b, x f y, a < b, [d], eq_atom$n(x;y), q_le(r;s), q_less(a;b), qeq(r;s), a = b, a = b, deq-member(eq;x;L), e = e', p  q, p  q, p q, , a < b, {T}, n+m, A  B, Outcome, #$n, S  T, n - m, |g|, (x  l), x:AB(x), SWellFounded(R(x;y)), pred!(e;e'), x:A.B(x), suptype(ST), first(e), pred(e), x.A(x), i  j , -n
Lemmases-fix-equal, es-fix-causle, ge wf, nat properties, kind wf, loc wf, first wf, pred! wf, strongwellfounded wf, es-interface wf, es-causle wf, es-causl-swellfnd, nat ind tp, guard wf, le wf, not functionality wrt iff, assert-es-eq-E-2, es-eq-E wf, false wf, eqtt to assert, iff transitivity, eqff to assert, assert of bnot, bnot wf, not wf, append wf, es-interface-val wf2, es-prior-interface wf, es-is-interface wf, es-prior-interface-causl, top wf, constant function wf, assert wf, bool wf, qle wf, cless wf, val-axiom wf, rationals wf, nat wf, Msg wf, kindcase wf, Knd wf, EState wf, EOrderAxioms wf, Id wf, IdLnk wf, unit wf, deq wf, event system wf, subtype rel wf, es-E-interface-subtype rel, es-fix wf2, es-E wf, es-E-interface wf, member wf, es-causl wf

origin